Effect of Amphipathic HIV Fusion Inhibitor Peptides on POPC and POPC/Cholesterol Membrane Properties: A Molecular Simulation Study
نویسندگان
چکیده
T-20 and T-1249 fusion inhibitor peptides were shown to interact with 1-palmitoyl-2-oleyl-phosphatidylcholine (POPC) (liquid disordered, ld) and POPC/cholesterol (1:1) (POPC/Chol) (liquid ordered, lo) bilayers, and they do so to different extents. Although they both possess a tryptophan-rich domain (TRD), T-20 lacks a pocket binding domain (PBD), which is present in T-1249. It has been postulated that the PBD domain enhances FI interaction with HIV gp41 protein and with model membranes. Interaction of these fusion inhibitor peptides with both the cell membrane and the viral envelope membrane is important for function, i.e., inhibition of the fusion process. We address this problem with a molecular dynamics approach focusing on lipid properties, trying to ascertain the consequences and the differences in the interaction of T-20 and T-1249 with ld and lo model membranes. T-20 and T-1249 interactions with model membranes are shown to have measurable and different effects on bilayer structural and dynamical parameters. T-1249's adsorption to the membrane surface has generally a stronger influence in the measured parameters. The presence of both binding domains in T-1249 appears to be paramount to its stronger interaction, and is shown to have a definite importance in membrane properties upon peptide adsorption.
منابع مشابه
Molecular Dynamics Simulation of HIV Fusion Inhibitor T-1249: Insights on Peptide-Lipid Interaction
T-1249 is a peptide that inhibits the fusion of HIV envelope with the target cell membrane. Recent results indicate that T-1249, as in the case of related inhibitor peptide T-20 (enfuvirtide), interacts with membranes, more extensively in the bilayer liquid disordered phase than in the liquid ordered state, which could be linked to its effectiveness. Extensive molecular dynamics simulations (10...
متن کاملCholesterol driven alteration of the conformation and dynamics of phospholamban in model membranes.
The effects of cholesterol on various membrane proteins are of long-standing interest in membrane biophysics. Here we present systematic molecular dynamics simulations (totaling 1.4 μs) of integral protein phospholamban incorporated in POPC/cholesterol bilayers (containing 0, 11.11, 22.03, 33.33, and 50 mol% of cholesterol). Phospholamban is a key regulator of cardiac contractility and has rece...
متن کاملBinding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions
Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD) study of the human adenosine receptor type 2A (hA(2A)R) in complex with caffeine--a system of high neuro-pharmacological relevance--within different membrane types. These are POPC, mixed POPC/PO...
متن کاملThe effect of Zn(2+) on the secondary structure of a histidine-rich fusogenic peptide and its interaction with lipid membranes.
Membrane fusion between uncharged lipid vesicles can be triggered by the peptide sequence 'B18' from the fertilization protein 'bindin', but it only proceeds efficiently in the presence of Zn(2+) ions. We studied (i) the interaction of Zn(2+) with the fusogenic peptide B18, (ii) the binding of B18 to 1-palmitoyl-2-oleoylglycero-3-phosphocholine (POPC), and (iii) the ternary system POPC/B18/Zn(2...
متن کاملEffects of peptide hydrophobicity on its incorporation in phospholipid membranes--an NMR and ellipsometry study.
Effects of peptide hydrophobicity on lipid membrane binding, incorporation, and defect formation was investigated for variants of the complement-derived antimicrobial peptide CNY21 (CNYITELRRQHARASHLGLAR), in anionic 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) and zwitterionic 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membranes. Using...
متن کامل